

Run I/II DØ Luminosity Constants

Brendan Casey, 7/13/2004

- Introduction
- Procedure
- Ingredients for Run I and Run II
- final corrections
- correlations

BROWN

Introduction

constant We call the effective inelastic cross-section the luminosity

$$\mathcal{L} = rac{1}{\sigma_{eff}} rac{dN}{dt}$$

$$\sigma_{eff} = \epsilon \times A \times \sigma_{inelastic}$$

$$\sigma_{inelastic} \equiv \sigma_{total} - \sigma_{elastic}$$

includes diffraction.

For Run II, we have new numbers for $\sigma_{inelastic}$ and the fraction of diffractive events.

these new numbers Run I luminosity constant needs to be updated to include

plays a big part in determining A. Dependence on $\sigma_{inelastic}$ is trivial. Diffractive fraction

Procedure

other experiments Inelastic and diffractive cross-sections are determined from

Acceptance is determined using Monte Carlo.

Inelastic generators do not get the diffractive fraction correct.

weight by the measured cross-sections ⇒ determine the acceptance for each process separately and

$$\sigma_{inelastic} = \sigma_{HC} + \sigma_{SD} + \sigma_{DD}$$

color flow (soft, forward) HC: non-diffractive, SD: $p + \bar{p} \rightarrow p + X$, DD: $p + \bar{p} \rightarrow X$ w/o

$$A \times \sigma_{inelastic} = A_{SD}\sigma_{SD} + A_{DD}\sigma_{DD} + A_{HC}(\sigma_{inelastic} - \sigma_{SD} - \sigma_{DD})$$

inelastic events with particles in our acceptance determined in zero-bias data using independently tagged

Cross-Sections

DD	SD	inelastic	
$7.0 \pm 2.0 \mathrm{\ mb}$	$9.6 \pm 0.5 \text{ mb}$	$60.7 \pm 2.4 \; \mathrm{mb}$	Run II
$1.29 \pm 0.20~\mathrm{mb}$	$9.57\pm0.43~\mathrm{mb}$	$57.55 \pm 1.56 \; \mathrm{mb}$	Run I old
$7.0 \pm 2.0 \mathrm{\ mb}$	$9.6\pm0.5~\mathrm{mb}$	$59.23 \pm 2.3 \; \mathrm{mb}$	Run I new

and scaled to 1.96 TeV. Run II inelastic is average of CDF and E811 measurements at 1.8 TeV

(S. Klimenko, J. Konigsberg, T.M. Liss, FERMILAB-FN-0741 (2003).)

Scaling for diffractive is unknown, assumed to be small, not applied.

measurements are available leading to the big change. Run I DD was an estimate based on measured SD value, now DD

Run II Acceptances

Generator Level

			•	
	MBR	MBR DTUJET	PHOJET Pythia	Pythia
HC	0.911	0.949	0.924	0.943
SD	0.183	0.088	0.280	0.242
DD	0.563	0.642	0.570	0.321
inelastic	0.75	0.78	0.78	0.76

Run I: used average of MBR and DTUJET, error = \pm half the difference

Run II: average of MBR and Phythia

$$\delta A_{HC} = \pm \frac{1}{2} | \mathrm{Pythia} - \mathrm{MBR} | \quad \delta A_{SD} = \delta A_{DD} = \pm | \mathrm{Pythia} - \mathrm{MBR} |$$

Acceptances

0.716 ± 0.030 0.829 ± 0.018
0.151 ± 0.050
0.971 ± 0.020
Run I old

cross-section error included. inelastic acceptance is the cross-section weighted acceptance with no

the Run I acceptance numbers Since we don't have the Run I MC available, its not feasible to update

Also wouldn't try to rescale the errors.

Efficiencies

inelastic	
0.909 ± 0.018	Run II
0.95 ± 0.02	Run Ia
0.907 ± 0.02	Run Ib

Thresholds changed between Run Ia and Run Ib

$$\sigma_{eff} = \epsilon \times [A_{SD}\sigma_{SD} + A_{DD}\sigma_{DD} + A_{HC}(\sigma_{inelastic} - \sigma_{SD} - \sigma_{DD})]$$

Run Ib	Run Ia	Run II	
$43.27 \pm 1.95 \; \mathrm{mb}$	$45.32 \pm 2.02 \; \mathrm{mb}$		old
$43.36 \pm 2.49 \; \mathrm{mb}$	$45.41 \pm 2.59 \; \mathrm{mb}$	$46 \pm 3 \; \mathrm{mb}$	new

Only change is in $\sigma_{inelastic}$, σ_{SD} , and σ_{DD} .

	corrections for Run I cross-sections:	
Run Ib	Run Ia	
0.998	0.998	central value
1.275	1.280	error

Run I, Run II, DØ, CDF Correlations

Inelastic and diffractive cross-sections 100% correlated for all

correlated but closer to 100% than $0\% \Rightarrow 100\%$ Acceptance: almost same generators for all, probably less than 100%

Efficiencies: some correlations due to similar procedures but probably

Run II error: 6%(correlated) $\oplus 2.6\%$ (uncorrelated)

Run Ia error: 5.3%(correlated) $\oplus 2.1\%$ (uncorrelated)

Run Ib error: 5.3%(correlated) $\oplus 2.2\%$ (uncorrelated)